Applied Linear Discriminant Analysis and Artificial Neural Network for Sorting Dried Figs Based on Texture Properties
نویسندگان
چکیده
Dried figs are one of the horticultural products that require sorting in the postharvest stage in order to be presented to the market. In Iran, figs are graded manually by professional workers or automatically by mechanical machines. This paper presents a new algorithm based on machine vision technology applicable to be installed in the fig sorting machines. In the presented methodology, image texture properties of figs are extracted by an image processing algorithm. Some features selected by stepwise linear discriminant analysis were introduced as the superior ones for discriminating different classes of dried figs. Among the ten features, discriminant analysis selected six. The selected texture features were fed to artificial neural networks in order to implement the classification process. The image processing assisted neural networks methodology showed promising result as the total sorting accuracy was 100%.
منابع مشابه
Design, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques
ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...
متن کاملApplication of Response Surface Methodology and Artificial Neural Network for Analysis of p-chlorophenol Biosorption by Dried Activated Sludge
Phenolic compounds are considered as priority pollutants because of their high toxicity at low concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated sludge was investigated. Activated sludge was collected as slurry from the sludge return line of a municipal wastewater treatment plant. Sorption experiments were carried out in batch mode. In order to invest...
متن کاملThe Prediction of the Tensile Strength of Sandstones from their petrographical properties using regression analysis and artificial neural network
This study investigates the correlations among the tensile strength, mineral composition, and textural features of twenty-ninesandstones from Kouzestan province. The regression analyses as well as artificial neural network (ANN) are also applied to evaluatethe correlations. The results of simple regression analyses show no correlation between mineralogical features and tensile strength.However,...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کامل